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Short Papers

Analysis of a General
Coacxial-Line/Radial-Line Region Junction

R. B. Keam and A. G. Williamson

Abstract—A general analysis of a coaxial line/radial-line region junction
is presented for the case where the centre conductor is sheathed in a
dielectric and extends the full width between two parallel metal plates.
Expressions for the current distribution and the admittance of the
junction are presented. Two example environments are considered, a
rectangular waveguide and a base entrant cylindrical cavity, although the
technique may be used for other environments. Comparison of theoretical
and experimental results for these two cases show the theory to be very
accurate.

1. INTRODUCTION

Junctions between coaxial-line and other transmission-line systems
find wide application in a variety of microwave devices. Such
transitions include coaxial-line to rectangular waveguide, and coaxial-
line power combiners and dividers. Until recently much of the design
of these devices has been based on empirical knowledge, based on
“trial and error” techniques. It would be a great saving in time and
expense to have analytic models for these junctions to aid design.
The analysis should be based on a model closely related to the
physical situation, and should not need empirical factors which can
only be obtained after extensive experimental measurements. The
type of junction considered here is that where the coaxial-line center
conductor extends the full width between two metal plates. The region
between the two metal plates is considered to be a “radial-line” type
environment, and examples of this include a coaxial-line entering
through the broad wall of a rectangular waveguide, and a coaxial-line
entering through the flat face of a cylindrical cavity. The radial-line
case (where the top and bottom metal plates are infinite in extent)
has been considered by Otto [1], and the rectangular waveguide
case has been considered by Williamson [2]. These analyses have
lead to accurate results for the current distribution on the center
conductor and the input admittance as seen at the coaxial-line input,
as well as equivalent circuit representations [3]. Until recently [4]
little attention has been devoted to the analysis of sheathed junctions.
The analysis presented here includes the sheathed junction case
in a generic solution which may be applied to a wide range of
junctions.

In this paper the method used in [1], [2] is extended to include the
case where the center post in the radial-line environment is completely
surrounded by a homogeneous dielectric sheath. It is shown that the
method may be generalized to any radial-line type environment and,
by way of example, the coaxial-line to cylindrical cavity junction
is considered. Thus, the actual coaxial-line section of the junction
may be treated as a functional block. The only additional parameter
required when considering a wide range of possible environments is
a factor which takes into account the environment external to the
junction region.
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Fig. 1. A general coaxial-line to radial-line junction.

Finally, a comparison of theoretical and experimental results is
given which shows the technique to be very accurate.

II. THEORY

Consider the juriction shown in Fig. 1 in which the center conductor
of the coaxial-line, of radius r = a, extends the full width between
the top and bottom plates, of separation h. The outer conductor of
the coaxial-line, and hence the aperture in the radial-line region is
of radius » = b. In the radial-line region the center conductor is
surrounded by a homogeneous, lossless dielectric sheath of relative
permittivity ¢, and radius » = c. In the analysis presented here it is
assumed that the region for » > c is filled with a lossless air dielectric
(though extension to include other homogeneous, lossless dielectrics
is straightforward), and that the fields may be average matched at
the r = ¢ boundary.

It is assumed in the analysis that the junction is driven from the
coaxial-line, and that the dimensions of the coaxial-line are such
that only the TEM mode can propagate in the line at the frequency
of interest. It is also assumed that all metal surfaces are perfectly
conducting, and that the fields have a time dependence of 7,

It has been shown elsewhere, using image theory [2], that the
fields of the junction problem are equivalent to those of an infinite
cylindrical antenna (of radius » = a) excited by an infinite series of
magnetic frills spaced at intervals of 2h along it. This automatically
satisfies the boundary conditions on the top and bottom metal
surfaces. The fields in one “cell” (0 < = < h) of the problem
are equivalent to those in the radial-line region. It has also been
shown that the analysis of this equivalent problem is assisted by first
considering a similar situation with only one magnetic frill located at
z = 0. The solution to the problem may be simplified by taking the
spatial Fourier Transform [1] with respect to the z-axis, considering
an antenna with only one magnetic frill at ~ = 0, and solving firstly
for the (FT) fields and current distribution.

If the current distribution on the single-frill antenna is given by
I"(z) then. by the principle of superposition, the current distribution
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on the infinite frill antenna, I(z), is easily shown to be given by

oo

I(z)= Z I"(z+ 2mh) (1

m=—oco

which can be shown, by Poisson’s Summation Formula to be

I(z) = %{I(oz =0)+2 Z I(a= m'rr/h)cosjmwz/h)}

m=1
, @
where Z(o) is the Fourier transform with respect to z of I™*(z)
(Fourier transformed quantities are henceforth given in script), and

+oo N
Z(w) =/ I'(e 7% dz ?3)

The use of Poisson’s Summation Formula in (2) means that super-
position and Fourier transform inversion have been applied in one
step.

The analysis of the problem may be considered in terms of three
regions; a < 7 < b inside the frill region; b < r < ¢ outside
the frill but inside the dielectric sheath; and » > c outside the
sheath. The (FT) fields within the dielectric sheath (¢ < 7 < ¢)
are assumed to be axially-symmetric as a simplification. Thus the
current distribution on the center post is also assumed to be axially-
symmetric (this is reasonable for an electrically thin center post).
This assumption is also reasonable for the calculation of admittance
since the admittance is related to the average fields in the aperture
(a < 7 < b) region. Whilst the fields outside the sheath region (in the
“radial-line” environment) may have @ variation for some situations,
they will be average matched at the dielectric interface at r = c. The
(FT) fields in the two dielectric regions are given by

E. = 2 k’ I(a Io(q a)fxo(q )
i (b/ ){Io(q ) Ko(q'b)
= Io(d'a)Ko(g'r)} + Alo(q'r)

Ho = LI(@)Io(d' ) Ka(d'7)
¥y

fora<r<b @)

q—/ﬁm{q_l? ~ 1a')Eola'®) ~ B Es (')
iK fora <7 <b ®)
and
PR Z4 0 () Io(q'a)Eolq'r)

- 2k’

— = Ko(q'r) I, + ALs(q'7) forb<r<c

In (b/ a)
(6)

He = —q—I(a)Io(q'a Ki(d'7m)
52K

77 @y A F

.
J,—k,AIl(q'r) forb<r<ec
an
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whilst the fields in the region outside the sheath are of the form;

= E(Ko(gr) + Slo(gr) + ep cos pd)

SIi(gqr) + Z h,,cosp(i) forr> ¢

p=—co

forr > ¢ (8)

Ho = 1k-E<K1(qr) -
qan

€)]

Since we will average match the fields at r = ¢, we will not need to
determine the e, and h, coefficients. Iy and I; are modified Bessel
functions of the first kind and are associated with inward travelling
waves, and K, and A are modified Bessel functions of the second
kind and are associated with outward travelling waves. Also k', 7',
and %, n are the wave numbers and intrinsic impedances within and
outside the dielectric (dashed symbols refer to quantities within the
dielectric region), I}, = Io(q'b) — Io(¢'a),q = Vo2 — k2, and
¢ = Va? - k2.

The terms involving the constant A (to be determined by a suitable
boundary condition) are associated with an inward reflected wave
from the dielectric interface and the terms involving the constant S
(henceforth referred to as the “environment factor™) are related to the
average of the electric field of the inward travelling wave due to the
environment outside the dielectric sheath. Note that (4)-(7) already
satisfy the condition that the fields are continuous across the r == b
interface.

If the boundary conditions, that £,(r = a) = 0, and the average
values with respect to # of both £, and Hy are continuous across the
surface r = c are applied, the result is (10) at the bottom of the page,
where K}, = Ko(q¢'d) — Ko(¢'a),Se = Ko(gc) + S.Io(gc),and
S1 = Ki(ge) — S.Ii(ge).

This may be substituted into (2) to give the current distribution on
the center post. If S is set to zero (i.e., the radial-line case) and ¢
is set to unity (i.e., no sheath) then the result in (10) reduces to that
given by Otto [1].

It has been shown [1] that the admittance looking into the junction
from the coaxial-line at = = 0 is given by

{y(a_0)+2 Zy(a—mw/h)} an

m=1

where

V(o) = / Ho(c,0) dr (12)

n ln b/ )
Using the results for Z(a) and (5), (13) is shown at the bottom of
the next page. For S = 0 and £, = 1, this result also reduces to
that given in [1].

In order to find the solution for any other type of region outside the
sheath, all that is required is the environment factor S. This factor
is the average with respect to angular variation, at r = c, of the
inward travelling wave caused by the environment external to the
dielectric, with the fields in the dielectric being assumed to be axially
symmetric. The actual fields outside the sheath are not required to
be axially symmetric.

Two interesting examples follow, firstly that where there is a short
circuit located in the radial-line at a radius » = d (i.e., a cylindrical
cavity), and secondly the coaxial-line/rectangular waveguide junction.

—jdmk!

o) = o i (o)

7' S1(Kolyg C)Iba — Io(q'c)K},) — qerSo(1i(q' e} Kp, + Ki(d'c)]ha)

(10)

X
q'S1(RKo(g'c)lo(q'a)

— Io(g'c)Ro(g'a)) — qerSo(I1{g' ) Ro(q'a) + K1(¢'c)lo(q'a))
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Fig. 2. A coaxial-line to cylindrical cavity junction.

III. CYLINDRICAL CAVITY JUNCTION

Consider Fig. 2, the case where a short circuit is located in the
radial-line at a radius » = d (where d > ¢). The (FT) electric field
in the region of the sheath (¢ < r < d) is axially symmetric. but has
two components; an outward travelling wave radiated by the junction,
and an inward travelling wave reflected by the cavity wall at r = d.
By applying the condition that the electric field at » = d must be
zero it is easy show that the environment factor S is;

_ Ko(qd)
T Io(gd)”
The solution for the current distribution and input admittance may be

obtained for the case of no dielectric sheath, simply by substituting
€ = 1 into all of the relevant equations.

(14)

IV. RECTANGULAR WAVEGUIDE

Consider Fig. 3, a rectangular waveguide of cross sectional dimen-
sions d and h, where d > h. The coaxial-line enters the waveguide
through the broad wall at a distance e from the side wall. The fields
outside of the sheath region are now functions of both r and §. All that
is now required is to find the total average (FT) electric field external
to the dielectric boundary, and hence the environment factor, S.

Using image theory to satisfy the boundary conditions on the side
walls [2], the problem can be shown to be equivalent to an infinite
array of parallel, sheathed junctions. It is assumed that each junction
in the array is radiating axially symmetrical about its own center, but
that the total field at any point is a function of both » and 6. The
total field due to all the junctions is to be summed external to the
n = 0 junction sheath, and then average matched [2] to the fields
within the n = 0 junction sheath. Thus the cqntribution to the (FT)

electric field from the nth junction is
& = ENo(¢R.,) (15)

where IR, is the radius relative to the center of the nth post’s own
axis. The addition theorem for modified Bessel functions [5] may be
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Fig. 3. Sectional view of a coaxial-line/rectangular waveguide junction.

used to show that;

Ko(qRa) = ) Kplgen)

p=—oc0

Ip(gr){(=1)P cos (pf) xn > (16)
where 7 is the radius relative to the n = 0 junction, x,, is the distance
between the nth junction and “parent” junction, and I, and K, are
pth order modified Bessel functions of the first and second kind.
This gives the fields due to the other junctions, relative to the n = 0
junction, as axially varying, inward travelling waves. The average
(FT) eleciric field due to the nth junction, just outside of the parent

junction’s sheath is
£ = ERo(gan)lo(gr) an

and so the total average field due to all the junctions, relative to the
n = 0 junction, is

gl = ERo(gr) + Elo(qr)

Z Ky (2|n|gd) — Z Ko (2|n + e/d|qd)
ni;()oo n=—oo

(13)

It can be seen by comparing (18) with (8), that the environment
factor S is given by

S= Y Konlgd) = Y Ko(2ln+ e/dlgd) (19)

n=—oco

n#0

n=—0o0

which is equivalent to the “array factor” derived by Williamson [2].
Equation (19) may now be substituted back into (10) and (13) to
give the current distribution on the junction’s center conductor and
the admittance looking into the junction at the coaxial-line port.
Upon substituting = = 1 (i.e., no sheath) the results for both
the current distribution and admittance reduce to that given by

Jdnk!

y(a) = q,2)7/ 1112 (b/(l)

{ln (b/a)+ (Io(q'a)Ko(q'd) — In(qg'b)Ro(q'a))

¢'S1(Ko(q'e)olq'b) — Ko(q'b)Io(q'c)) — g, So(B1(q'¢)Io(g'b) + Ko(g'b) 1 (¢'c))

75 (Fo(gc)o(q'a) — Kolga)To(g'c)) = g So(Balqe)To(qa) + Ix'o(q’a)Il(q’c))} 13
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Coaxial—line/Cylindrical Cavity.

Dielectric: er=2.1, ¢=24.12mm
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Fig. 4. Phase of reflection coefficient of the coaxial-line/cylindrical cavity
junction for both the sheathed and unsheathed cases.

Williamson in [2]. It is worth noting that, while Williamson allowed
the total field to vary axially within the coaxial aperture, the inte-
gration for the admittance effectively averages the fields within the
aperture. Thus both methods yields the same results for the case of
no sheath,

V. THEORETICAL AND EXPERIMENTAL COMPARISON

It is appropriate at this stage to demonstrate the accuracy of
the theory by comparing theoretical predictions with experimental
measurements. The reflection coefficient at the coaxial aperture plane
has been measured for both the rectangular waveguide junction, and
cylindrical cavity junction and compared to the results obtained from
the admittance expression. For both cases 50 {2 coaxial-line was used
with dimensions of ¢ = 1.525 mm and b = 3.50 mm.

In Fig. 4 theoretical and experimental results are shown for the
phase of the reflection coefficient for the coaxial-line/cylindrical
cavity junction for both the sheathed and unsheathed cases (the
magnitude of the reflection coefficient is, of course, equal to one).
The dimensions of the cavity were d = 41.0 mm and & = 150 mm.
The dielectric was Teflon with a radius ¢ = 24.12 mm and a relative
permittivity of £, = 2.1. Clearly the agreement between theoretical
and experimental results is excellent.

For the unsheathed case the first resonance would occur when
kh = w, at 1 GHz, and for a completely dielectrically filled cavity the
first resonance would occur when k'h = =, at 690 MHz. The resonant
frequency for the sheathed case is a function of the sheath radius,
and for the case shown, occurred at 720 MHz. Thus, at frequencies
between 690 MHz and 1 GHz, there are two outwardly propagating
modes within the sheath but only one in the main section of the

cavity.

In Fig. 5 theoretical and experimental results are given for the
magnitude and phase of the reflection coefficient for the coaxial-
line/rectangular waveguide junction. The results for the case where
there is no dielectric sheath has already been extensively investigated
[2], and found to be very accurate. In the study presented here, the
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Coaxial—line/Rectangular Wavegquide

Dielectric: er=2.1, ¢=6.77mm
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Fig. 5. Magnitude and phase of reflection coefficient of the coax-
ial-line/rectangular waveguide junction for both the sheathed and unsheathed
cases.

dimensions of the rectangular waveguide were d = 48 mm and
h = 22 mm, and the dielectric was Teflon, with a radius ¢ = 6.77
mm and a relative permittivity £, = 2.1. It can be seen that again
there is excellent agreement between the theoretical and experimental
results below cutoff and in the range 3 to 6 GHz where there is only
one propagating mode, and also above 6 GHz. The model places no
restriction on the number of propagating modes, but above 6 GHz
the VSWR of the waveguide terminations used is unknown.

The average matching approximation at » = ¢ was applied in the
rectangular waveguide junction case (the fields are axially symmetric
in the coaxial-line to cylindrical cavity case considered). Clearly this
approximation would be very accurate for an electrically small core
region, but would be less satisfactory, and thus less accurate, for
electrically larger cases. Note however, that for the case considered
here excellent accuracy was obtained even when the dielectric region
was approximately one quarter of the guide width (corresponding to
¢ = A/8 at 6 GHz).

V1. CONCLUSION

The analysis of a coaxial-line junction, where the center conductor
extends the full width between two parallel metal plates and is
completely surrounded by a dielectric sheath, has been presented.
Expressions for the current distribution on the post, and input
admittance have been given.

The analysis involves expressions for the fields which accounted
for the coaxial aperture, reflections from the dielectric interface, and
inward travelling waves reflected from the surrounding environment.
The junction is then considered as a functional block which only
requires one factor to account for the external environment. This
technique can be applied to a wide range of external radial-line type
environments. Two such environments, the cylindrical cavity, and the
rectangular waveguide have been considered here and a comparison
between theoretical and experimental results shows the method to be

very accurate.
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A Rigorous Analysis of a Shielded
Microstrip Asymmetric Step Discontinuity

C. N. Capsalis, N. K. Uzunoglu,
C. P. Chronopoulos, and Y. D. Sigourou

Abstract—In this paper microstrip asymmetric step discontinuities are
analyzed using a mode-matching technique leading to the frequency-
dependent characteristics of the structure. On both sides of the discon-
tinuity the fields are expanded in terms of the normal even and odd
hybrid modes of shielded microstrip lines, taking into account not only
the propagating modes but also higher order even and odd modes, which
are evanescent-type waves. The propagation constants of the even and odd
hybrid modes are computed using a previously developed method. Then
a mode-matching technique is applied in order to obtain the reflection
and transmission coefficients of the discontinuity. Numerical results are
also given for several asymmetric step discontinuities.

I. INTRODUCTION

Modelling of discontinuities in microstrip lines is highly important
in analyzing the behavior of microwave and millimeter wave circuits.

A commonly encountered discontinuity structure in microstrip lines
is the asymmetric abrupt change in strip line width, which can be
employed in low pass filters, quarter-wavelength transformers and
generally in a wide range of microwave circuits. In that sense it is very
important to develop analytical techniques to treat this discontinuity
problem, especially in high frequencies (above 10 GHz) where the
lumped C' and L description becomes less and less valid.

Microstrip discontinuity problems have been treated in the past by
several authors [1]-[8]. Several comprehensive reviews on this matter
are also presented in books [9]-[12]. The unshielded asymmetric
microstrip step discontinuity is studied in [2], where a magnetic-
wall model is employed. However, a full-wave analysis might be
required in order to describe efficiently the discontinuity behavior at
very high frequencies.

In this paper the concepts of the mode-matching techniques are
employed in order to formulate a full-wave analysis of the boundary
condition problem associated with the asymmetric microstrip step
discontinuity. The fields on both sides of the discontinuity interface
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are expanded in terms of both even and odd hybrid modes. The
characteristics of these modes are determined by using an analysis
similar to [13] by Mittra and Itoh, which determined the dispersion
characteristics of microstrip lines.

Then an efficient mode-matching procedure is developed by using
products involving the orthogonal functions of both microstrip lines.

The technique used in this paper is similar to that developed
previously by the authors [14] but now odd symmetry modes are
taken into account in order to treat the asymmetric step microstrip
discontinuities.

In the following analysis the time dependence of field quantities is
assumed to be exp(jwt) and is suppressed throughout the analysis.

II. MODE CHARACTERISTICS OF THE MICROSTRIP

The geometry of the discontinuity problem under discussion is
shown in Fig. 1. The step discontinuity is located at the z = 0
plane. The shielding box height and width are denoted by A and 2L,
respectively. Also the substrate dielectric constant and thickness are
denoted by €, and d respectively

The conductive strip widths in the z < 0 and z > 0 regions
are shown as 2¢, and 2t respectively, while ¢ denotes the axial
displacement of the two microstrip lines on the = = 0 interface plane.
Of course, the displacement of the two shielding boxes leads to an
artificial geometry. However, it does not really affect the microstrip
discontinuity itself, taking into account that this displacement is
negligible compared to the shielding boxes’ dimensions. Furthermore,
a geometry where the shielding box is sufficiently wider than the
microstrip is almost equivalent to the open microstrip asymmetric
step discontinuity.

Because of the partial dielectric filling of the shielding box, only
hybrid modes can be guided. The basic approach employed in the
present analysis is the analytical technique developed by Mittra
and Itoh [13] to determine the properties of both propagating and
higher order evanescent modes. In [13] only even hybrid modes have
been taken into account, while the asymmetric nature of the step
discontinuity under study involves the properties of both odd and
even modes. In the present analysis, the same notation as in [13],
[14] is adopted.

In the odd mode case, the TM and TE field components are derived

from the scalar potentials ¢, (€) w(h) as follows:
¢(e) Z A(e) sinh
(l)y sin (knz)

5 = Z B' sinh
n=1
a? (h — y) sin (k)
(h) Z A(h) cosh

my cos (k knt)

Z B(h) cosh

ocff)(h — y) cos (l:nx) )

P =

where the superscripts (e), (h) are associated with £ (TM) and H
(TE) fields respectively, while the subscript ¢ = 1,2 designates the
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