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Short Papers

Analysis of a General

Coaxial-Line/Radial-Line Region Junction

R. B. Keam and A. G. Williamson

Abstract—A general analysis of a coaxial line/radial-line region junction

is presented for the case where the centre conductor is sheathed in a

dielectric and extends the full width between two parallel metal plates.

Expressions for the current distribution and the admittance of the

junction are presented. Two example environments are considered, a
rectangular waveguide and a base entrant cylindrical cavity, although the

technique may be used for other environments. Comparison of theoretical
and experimental results for these two cases show the theory to be very
accurate.

I. INTRODUCTION

Junctions between coaxial-line and other transmission-line systems

find wide application in a variety of microwave devices. Such

transitions include coaxial-line to rectangular waveguide, and coaxial-

line power combiners and dividers. Until recently much of the design

of these devices has been based on empirical knowledge, based on

“trial and error” techniques. It would be a great saving in time and

expense to have analytic models for these junctions to aid design.

The analysis should be based on a model closely related to the

physical situation, and should not need empirical factors which can

only be obtained after extensive experimental measurements. The

type of junction considered here is that where the coaxial-line center

conductor extends the full width between two metal plates. The region

between the two metal plates is considered to be a “radial-line” type

environment, and examples of this include a coaxial-line entering

through the broad wall of a rectangular waveguide, and a coaxial-line

entering through the flat face of a cylindrical cavity. The radial-line

case (where the top and bottom metal plates are infinite in extent)

has been considered by Otto [1], and the rectangular waveguide

case has been considered by Williamson [2]. These analyses have

lead to accurate results for the current distribution on the center

conductor and the input admittance as seen at the coaxial-line input,

as well as equivalent circuit representations [3]. Until recently [4]

little attention has been devoted to the analysis of sheathed junctions.

The analysis presented here includes the sheathed junction case

in a generic solution which may be applied to a wide range of

junctions.

In this paper the method used in [1], [2] is extended to include the

case where the center post in the radial-line environment is completely

surrounded by a homogeneous dielectric sheath. It is shown that the

method may be generalized to any radial-line type environment and,

by way of example, the coaxial-line to cylindrical cavity junction

is considered. Thus, the actual coaxial-line section of the junction

may be treated as a functional block. The only additional parameter

required when considering a wide range of possible environments is

a factor which takes into account the environment external to the

junction region.
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Fig. 1. A general coaxiaf-line to radial-line junction,

Finally, a comparison of theoretical and experimental results is

given which shows the technique to be very accurate.

II. THEORY

Consider the jtuiction shown in Fig, 1 in which the center conductor
of the coaxial-line, of radius r = a, extends the full width between

the top and bottom plates, of separation h. The outer conductor of

the coaxial-line, and hence the aperture in the radial-line region is

of radius r- = b. In the radial-line region the center conductor is

surrounded by a homogeneous, lossless dielectric sheath of relative

permittivity e, and radius r = c. In the analysis presented here it is

assumed that the region for T > c is filled with a lossless air dielectric

(though extension to include other homogeneous, lossless dielectrics

is straightforward), and that the fields may be average matched at

the r = c boundary.

It is assumed in the analysis that the junction is driven from the

coaxial-line, and that the dimensions of the coaxial-line are such

that only the TEM mode can propagate in the line at the frequency

of interest. It is also assumed that all metal surfaces are perfectly

conducting, and that the fields have a time dependence of e~’”t.

It has been shown elsewhere, using image theory [2], that the

fields of the junction problem are equivalent to those of an infinite

cylindrical antenna (of radius r = a ) excited by an infinite series of

magnetic frills spaced at intervals of 2h along it. This automatically

satisfies the boundary conditions on the top and bottom metal

surfaces. The fields in one “cell” (O < z < h) of the problem

are equivalent to those in the radial-line region. It has also been

shown that the analysis of this equivalent problem is assisted by first

considering a similar situation with only one magnetic frill located at

2 = O. The solution to the problem may be simplified by taking the

spatial Fourier Transform [1] with respect to the c-axis, considering

an antenna with only one magnetic frill at : = O, and solving firstly

for the (FT) fields and current distribution.

If the current distribution on the single-frill antenna is given by

~“ ( J ) then. by the ptinciple of superposition, the current distribution
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ortthe infinite frill antenna, I(z), is easily shown to be given by

m.—cc

which can be shown, by Poisson’s Summation Formula to be

(1)

{

.
I(z)=; z(a=o)+ 2~z(a=mm/h) cosimTz/h)

m= 1 1
(2)

where Z(a) is the Fourier transfofi with respect to z of l*(z~
(Fourier transformed quantities are henceforth given in script), and

J

+-
Z(a) = I*(z) e-JQz & (3)

—CC

The use of Poisson’s Summation Formula in (2) means that super-

position and Fourier transform inversion have been applied in one

step.

The analysis of the problem maybe considered in terms of three

regions; a < T < b inside the frill region; b < T < c outside

the frill but inside the dielectric sheath; and r > c outside the

sheath. The (IW) fields within the dielectric sheath (a < r < c)

are assumed to be axially-symmetric as a simplification. Thus the

current dkributiononthec enterpost is also assumed to be axially-

symmetric (this is reasonable for an electrically thin center post).

This assumptions also reasonable forthe calculation of admittance

since the admittance is related to the average fields in the aperture

(a< r < b) region. Whilst the fields outside the sheath region (in the
“radial-line” environment) may have Ovariation for some situations,

they will beaverage matched atthedielectric interfaceatr = c. The
(~) fields in the two dielectric regions are given by

j2k’

{-

1
+ – ll(q’r)KO(q’b) – 10(q’b)lil(q’r-)

q’q’ln (b/a) q’r }

+ $$AII (q’r) fora~r~b (5)

and

8= = -Z(a) IO(y’a)Ii”O(g’r)

2— —Ko(q’r)l~. + AIo (q’r)
in (b/a)

forb~r~c

(6)

Me = ~Z(a)IO(q’a)I{l (q’r)

whilst the fields in the region outside the sheath are of the form;

&z = E(Ii”O(qr) + SIO(qT) + e, cospO) forr~c (8)

(‘~k E K1(qr)-

.

z@=— SIl(q?’)+ ~ hpcospd

)

forr~ c
9V p.–cc

(9)

Since we will average match the fields at r = c, we will not need to

determine thee, andhp coefficients.10 andll are modified Bessel

functions of the first kind and are associated with inward travelling

waves, and KO and lJ1 aremoditied Bessel functions of the second
kind andareassociated with outward travelling waves. Also k’, ~’,
and k,q are the wave numbers and intrinsic impedances within and
outside the d~electnc (dashed symbols refer to quantities within Ithe
dielectric region), 1(0 = Io(q’b) –Io(q’a), q = ~=, and

9’ = ~.
The terms involving the constant A (to be determined by a suitable

boundary condition) are associated with an inward reflected wave
from the dielectric interface and the terms involving the constant S
(henceforth referred to as the “environment factor”) are related to the
average of the electric field of theinward travelling wave due to the
environment outside the dielectric sheath. Note that (4)–(7) already
satisfy the condition that the fields are continuous across the r ❑ = b

interface. -

If the boundary conditions, that S.(T = a) = O, and the average
values with respect toe of both&, andfio are continuous across the
surfacer = care applied, theresult is(lO)at the bottom of the page,
where Ii”~. = KO(q’b) –KO(q’a), SO = I{o(Qc) +S.10(qc),and
s, = K,(qc)-s.Il(qc).

This may be substituted into (2) to give the current distribution on

the centermost, If S is set to zero (i.e., the radial-line case) and ~~

is set to unity (i.e., no sheath) then the result in (10) reduces to that

given by Otto [1].

It has been shown [1] that the admittance looking into the junction

from thecoaxial-lineat ~ = O is given by

{

.
Y=* y(a=o)+ 2~Y(a=?n7r/h)

}
(11)

?n=l

where
b

y(a) = 2*
/

?lo(a,O) dr
v in (b/a) ~

(12)

Using the results for Z(a) and (5), (13) is shown at the bottom of

the next page. For S = O and E. = 1, this result also reduces to

that given in [1].

In order to find the solution for any other type of region outside the

sheath, all that is required is the environment factor S. This factor

is the average with respect to angular variation, at T = c, of the

inward traveling wave caused by the environment external to the
dielectric, with the fields in the dielectric being assumedto be axially
symmetric. The actual fields outside the sheath are not requiredl to
be axially symmetric.

Two interesting examples follow, firstly that where there is a short
circuit located in the radial-line at a radius T = d (i.e., a cylindrical
cavity), and secondly the coaxial-line/rectangulm waveguide junction.

z(a) =
–j47rk’

g’zq’ in (b/a)

q’S1 (KO(q’c)IL – 10(q’c)liia) – 9ers0(11(cf’c)II(a + 1~1(9’c)~(a )

x q’Sl(IfO(q’c)IO (q’a) – IO(q’c)I{O(q’a)) – 9crS0(Il (q’c)IJ0(9’a) + IJl(9’c)IO(q’a))
(lo)
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Fig. 2. A coaxial-line to cylindrical cavity junction.

III. CYLINDRICAL CAVITY JUNCTION

Consider Fig. 2, the case where a short circuit is located in the

radial-line at a radius r = d (where d > c). The (FT) electric field

in the region of the sheath (c < r < d) is axially symmetric, but has

two components; an outward traveling wave radiated by the junction,

and an inward traveling wave reflected by the cavity wall at r = d.

By ap,plying the condition that the electric field at r = d must be

zero it is easy show that the environment factor S is;

s = _Ko(qd)

Io(qd) “
(14)

The solution for the current distribution and input admittance may be

obtained for the case of no dielectric sheath, simply by substituting

e, = 1 into all of the relevant equations.

IV. RECTANGULAR WAVEGUIDE

Consider Fig. 3, a rectangular waveguide of cross sectional dimen-

sions d and h, where d > h. The coaxial-line enters the waveguide

through the broad wall at a distance e from the sidewall. The fields

outside of the sheath region are now functions of both r and.$. All that

is now required is to find the total average (FT) electric field external

to the dielectric boundary, and hence the environment factor, S.

Using image theory to satisfy the boundary conditions on the side

walls [2], the problem can be shown to be equivalent to an infinite

array of parallel, sheathed junctions. It is assumed that each junction

in the array is radiating axially symmetrical about its own center, but

that the total field at any point is a function of both r and 6’, The

total field due to all the junctions is to be summed external to the

n = O junction sheath, and then average matched [2] to the fields

within the n = O junction sheath. Thus the contribution to the (FT)

electric field from the nth junction is

where R. is the radius relative to the center of the nth post’s own

axis. Theaddition theorem for modified Bessel functions [5] maybe

Fig. 3.

used to

+N- 2.b

Sectional view of a coaxial-line/rectangular waveguide junction.

show that;

p=–m

lP(qr)(-l)Pcos(p8) Zn >r (16)

wherer istheradius relative to then = Ojunction, xn is the distance

between the nth junction and’’parent” junction, andlP and Ifp are

pth order modified Bessel functions of the first and second kind.

This gives the fields due to the other junctions, relative to the n = O

junction, as axially varying, inward traveling waves. The average

(FT) electric field due to the nth junction, just outside of the parent

junction’s sheath is

&Fa’e = EL-o (q%n)Io(yr) (17)

and so the total average field due to all the junctions, relative to the

n = O junction, is

E:””l = EK()(qr’) + EI, (gr)

{W

~ ~ I{o(21n]qd)- ~ Iio(21n+e/dlqd)
..—m R.—m

n#o }

(18)

It can be seen by comparing (18) with (8), that the environment

factor S is given by

. m

S= ~ 1[O(21T,lqd)– ~ 1{o(21n+e/dlqd) (19)
.=—CC ..—cc

?2#o

which is equivalent to the “array factor” derived by Williamson [2].

Equation (19) may now be substituted back into (10) and (13) to

give the current distribution on the junction’s center conductor and

the admittance looking into the junction at thecoaxial-line port.

Upon substituting E, = 1 (i.e., no sheath) the results for both

the current distribution and admittance reduce to that given by

y(a) =
jhk’

{
In (b/a) + (lo(g’a)l[o(g’b) – ~o(q’b)~~o(q’a))

g’zq’ lnz (b/a)

q’Sl(Ko(q’c)lo(q’b) – Ko(q’b)lO(q’c)) – qs,So(l{l (y ’c)lo(q’b) + Ko(q’b)ll(q’c))

x q'sl(I[o (g`c)Io (g'a)-I[o (q'a)Io(y'c)) -qErso(I:l (q'c)Io (q'a)+I:o (g'a)Il(q'c)) }
(13)
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Fig. 4. Phase of reflection coefficient of the coaxial-line/cylindrical cavity
junction for both the sheathed and unsheathed cases.

Williamson in [2]. It is worth noting that, while Williamson allowed

the total field to vary axially within the coaxial aperture, the inte-

gration for the admittance effectively averages the fields within the

aperture. Thus both methods yields the same results for the case of

no sheath.

V. THEORETICAL AND EXPERIMENTAL COMPARISON

It is appropriate at this stage to demonstrate the accuracy of

the theory by comparing theoretical predictions with experimental

measurements. The reflection coefficient at the coaxial aperture plane

has been measured for both the rectangular waveguide junction, and

cylindrical cavity junction and compared to the results obtained from

the admittance expression. For both cases 50 Q coaxial-line was used

with dimensions of a = 1.525 mm and b = 3.50 mm.

In Fig. 4 theoretical and experimental results are shown for the

phase of the reflection coefficient for the coaxial-line/cylindrical

cavity junction for both the sheathed and unsheathed cases (the

magnitude of the reflection coefficient is, of course, equal to one).

The dimensions of the cavity were d = 41.0 mm and h = 150 mm.

The dielectric was Teflon with a radius c = 24.12 mm and a relative

permittivity of e, = 2.1. Clearly the agreement between theoretical

and experimental results is excellent.

For the unsheathed case the first resonance would occur when

kh = rr, at 1 GHz, and for a completely dielectrically filled cavity the

first resonance would occur when k’ h = m, at 690 MHz. The resonant
frequency for the sheathed case is a function of the sheath radius,
and for the case shown, occurred at 720 MHz. Thus, at frequencies
between 690 MHz and 1 GHz, there are two outwardly propagating
modes within the sheath but only one in the main section of the
cavity.

In Fig. 5 theoretical and experimental results are given for the
magnitude and phase of the reflection coefficient for the coaxial-
line/rectangular waveguide junction. The results for the case where
there is no dielectric sheath has already been extensively investigated
[2], and found to be very accurate. In the study presented here, the

Coaxial–line/Rectangulctr Waveguide

Dielectric: er=2.1, c=6.77mm
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Fig. 5. Magnitude and phase of reflection coefficient of the coax-
ial-line/rectangular waveguide junction for both the sheathed and unsheathed
cases.

dimensions of the rectangular waveguide were d = 48 mm and

h = 22 mm, and the dielectric was Teflon, with a radius c = 6.77

mm and a relative permittivity s, = 2.1. It can be seen that again

there is excellent agreement between the theoretical and experimental

results below cutoff and in the range 3 to 6 GHz where there is only

one propagating mode, and also above 6 GHz. The model places no

restriction on the number of propagating modes, but above 6 GHz

the VS WR of the waveguide terminations used is unknown.

The average matching approximation at r = c was applied in the

rectangular waveguide junction case (the fields are axially symmetric

in the coaxial-line to cylindrical cavity case considered). Clearly this

approximation would be very accurate for an electrically small core

region, but would be less satisfactory, and thus less accurate, for

electrically larger cases. Note however, that for the case considered

here excellent accuracy was obtained even when the dielectric region

was approximately one quarter of the guidle width (corresponding to

c x ~/8 at 6 GHz).

VI. CONCLUSION

The analysis of a coaxial-line junction, where the center conductor

extends the full width between two parallel metal plates and is

completely surrounded by a dielectric sheath, has been presented.

Expressions for the current distribution on the post, and input

admittance have been given.

The analysis involves expressions for the fields which accounted

for the coaxial aperture, reflections from the dielectric interface, and

inward traveling waves reflected from the surrounding environment.

The junction is then considered as a functional block which only

requires one factor to account for the external environment. This

technique can be applied to a wide range of external radial-line type

environments. Two such environments, the cylindrical cavity, and the

rectangular waveguide have been considered here and a comparison

between theoretical and experimental results shows the method to be

very accurate.
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A Rigorous Analysis of a Shielded

Microstrip Asymmetric Step Discontinuity

C. N. Capsalis, N. K. Uzunoglu,

C. P. Chronopoulos, and Y. D. Sigourou

Abstract—In this paper microstrip asymmetric step discontinuities are

analyzed using a mode-matching technique leading to the frequency-

dependent characteristics of the structure. On both sides of the discon-
tinuity the fields are expanded in terms of the normal even and odd
hybrid modes of shielded microstrip lines, taking into account not only
the propagating modes but also higher order even and odd modes, which
are evanescent-type waves. The propagation constants of the even and odd
hybrid modes are computed using a previously developed method. Then

a mode-matching technique is appfied in order to obtain the reflection
and transmission coefficients of the dkcontinuity. Numerical results are

also given for several asymmetric step discontinuities.

I. INTRODUCTION

Modelling of discontinuities in microstrip lines is highly important

in analyzing the behavior of microwave and millimeter wave circuits.

A commonly encountered discontinuity structure in microstnp lines

is the asymmetric abrupt change in strip line width, which can be

employed in low pass filters, quarter-wavelength transformers and

generally in a wide range of microwave circuits. In that sense it is very

important to develop analytical techniques to treat this discontinuity

problem, especially in high frequencies (above 10 GHz) where the

lumped C and L description becomes less and less valid.

Microstrip discontinuity problems have been treated in the past by

several authors [1 ]–[8]. Several comprehensive reviews on this matter

are also presented in books [9]–[ 12]. The unshielded asymmetric

microstrip step discontinuity is studied in [2], where a magnetic-

wall model is employed. However, a full-wave analysis might be

required in order to describe efficiently the discontinuity behavior at

very high frequencies.

In this paper the concepts of the mode-matching techniques are

employed in order to formulate a full-wave analysis of the boundary

condition problem associated with the asymmetric microstnp step

discontinuity. The fields on both sides of the discontinuity interface
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are expanded in terms of both even and odd hybrid modes. The

characteristics of these modes are determined by using an analysis

similar to [13] by Mittra and Itoh, which determined the dispersion

characteristics of microstrip lines.

Then an efficient mode-matching procedure is developed by using

products involving the orthogonal functions of both microstrip lines.

The technique used in this paper is similar to that developed

previously by the authors [14] but now odd symmetry modes are

taken into account in order to treat the asymmetric step microstrip

discontinuities.

In the following analysis the time dependence of field quantities is

assumed to be exp(jwt ) and is suppressed throughout the analysis.

II. MODE CHARACTERISTICS OF THE MICROSTRIP

The geometry of the discontinuity problem under discussion is

shown in Fig. 1. The step discontinuity is located at the z = O

plane. The shielding box height and width are denoted by h and 2L,

respectively. Also the substrate dielectric constant and thickness are

denoted by c? and d respectively

The conductive strip widths in the z < 0 and z > 0 regions

are shown as 2tl and 2tz respectively, while e denotes the axial

dkplacement of the two microstrip lines on the z = O interface plane.

Of course, the displacement of the two shielding boxes leads to an

artificial geometry. However, it does not really affect the microstrip

discontinuity itself, taking into account that this displacement is

negligible compared to the shielding boxes’ dimensions. Furthermore,

a geometry where the shielding box is sufficiently wider than the

micro strip is almost equivalent to the open micro strip asymmetric

step discontinuity.

Because of the partial dielectric filling of the shielding box, only

hybrid modes can be guided. The basic approach employed in the

present analysis is the analytical technique developed by Mittra

and Itoh [13] to determine the properties of both propagating and

higher order evanescent modes. In [13] only even hybrid modes have

been taken into account, while the asymmetric nature of the step

discontinuity under study involves the properties of both odd and

even modes. In the present analysis, the same notation as in [13],

[14] is adopted.

In the odd mode case, the TM and TE field components are derived

from the scalar potentials +:’), ~fk) as follows:

.
(e)~inh&e) = ~ An

?2=1

cz~)gsin(kn.n)

where the superscripts (e), (h) are associated with E (TM) and H

(TE) fields respectively, while the subscript i = 1,2 designates the
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